JFrog and NVIDIA Collaborate to Deliver Secure AI Models with New NIM Microservices Integration

JFrog and NVIDIA Collaborate to Deliver Secure AI Models with New NIM Microservices Integration
Published on
2 min read

 JFrog Ltd. the Liquid Software company and creators of the JFrog Software Supply Chain Platform, now expanded to include a unified MLOps platform through the acquisition of Qwak AI, today announced a new product integration with NVIDIA NIM microservices, part of the NVIDIA AI Enterprise software platform. 

The integration of the JFrog Platform with the JFrog Artifactory model registry and NVIDIA NIM is expected to combine GPU-optimized, pre-approved AI models with centralized DevSecOps processes in an end-to-end software supply chain workflow. This allows organizations to bring secure machine learning (ML) models and large language models (LLMs) to production at lightning speed, with increased transparency, traceability, and trust.

“As organizations rapidly adopt AI technology, it's essential to implement practices that ensure their efficiency and safety, and that incorporate AI responsibly,” said Gal Marder, EVP Strategy, JFrog. “By integrating DevOps, security, and MLOps processes into an end-to-end software supply chain workflow with NVIDIA NIM microservices, customers will be able to efficiently bring secure models to production while maintaining high levels of visibility, traceability, and control throughout the pipeline.”

With the rise and accelerated demand for AI in software applications, data scientists and ML engineers face significant challenges when scaling ML model deployments in enterprise environments. Fragmented asset management, security vulnerabilities, compliance issues, and performance bottlenecks are compounded by the complexities of integrating AI workflows with existing software development processes and the requirement for flexible, secure deployment options across various environments. This compounded complexity can result in very long, expensive deployment cycles and, in many cases, failure of AI initiatives.

“As enterprises scale their generative AI deployments, a central repository can help them rapidly select and deploy models that are approved for development,” said Pat Lee, Vice President, Enterprise Strategic Partnerships, NVIDIA. “The integration of NVIDIA NIM microservices into the JFrog Platform can help developers quickly get fully compliant, performance-optimized models quickly running in production.”

JFrog Artifactory provides a single solution for housing and managing all the artifacts, binaries, packages, files, containers, and components for use throughout software supply chains. The JFrog Platform’s integration with NVIDIA NIM is expected to incorporate containerized AI models as software packages into existing software development workflows. By coupling NVIDIA NGC – a hub for GPU-optimized deep learning, ML and HPC models – with the JFrog platform and JFrog Artifactory model registry, organizations will be able to maintain a single source of truth for all software packages and AI models, while leveraging enterprise DevSecOps best practices to gain visibility, governance, and control across their software supply chain.

The integration between the JFrog Platform and NVIDIA NIM is anticipated to deliver multiple benefits, including:

  • Unified Management: Centralized access control and management of NIM microservice containers alongside all other assets, including proprietary artifacts and open-source software dependencies, in JFrog Artifactory as the model registry to enable seamless integration with existing DevSecOps workflows.

  • Comprehensive Security and Integrity: Continuous scanning at every stage of development - including containers and dependencies - delivering contextual insights across NIM microservices with JFrog auditing and usage statistics that drive compliance.

  • Exceptional Model Performance and Scalability: Optimized AI application performance using NVIDIA accelerated computing infrastructure, offering low latency and high throughput for scalable deployment of LLMs to large-scale production environments.

  • Flexible Deployment:  Flexible deployment options via JFrog Artifactory, including self-hosted, multi-cloud, and air-gap deployment options.

𝐒𝐭𝐚𝐲 𝐢𝐧𝐟𝐨𝐫𝐦𝐞𝐝 𝐰𝐢𝐭𝐡 𝐨𝐮𝐫 𝐥𝐚𝐭𝐞𝐬𝐭 𝐮𝐩𝐝𝐚𝐭𝐞𝐬 𝐛𝐲 𝐣𝐨𝐢𝐧𝐢𝐧𝐠 𝐭𝐡𝐞 WhatsApp Channel now! 👈📲

𝑭𝒐𝒍𝒍𝒐𝒘 𝑶𝒖𝒓 𝑺𝒐𝒄𝒊𝒂𝒍 𝑴𝒆𝒅𝒊𝒂 𝑷𝒂𝒈𝒆𝐬 👉 FacebookLinkedInTwitterInstagram

Related Stories

No stories found.
logo
DIGITAL TERMINAL
digitalterminal.in