Microsoft Collaborates with Purdue University to Advance Quantum Computing

Microsoft Collaborates with Purdue University to Advance Quantum Computing

"If this project is successful it will cause a revolution in computing." That's the forecast of Michael Manfra, Purdue University's Bill and Dee O'Brien Chair Professor of Physics and Astronomy, professor of materials engineering and professor of electrical and computer engineering, on a new long-term enhanced collaboration between Purdue and Microsoft Corp. to build a robust and scalable quantum computer by producing what scientists call a "topological qubit."

Purdue President Mitch Daniels noted that Purdue was home to the first computer science department in the United States, and says this partnership and Manfra's work places the university at the forefront of quantum computing.

"Someday quantum computing will move from the laboratory to actual daily use, and when it does, it will signal another explosion of computing power like that brought about by the silicon chip," Daniels says. "It’s thrilling to imagine Purdue at the center of this next leap forward.”

In the computers that we currently use every day, information is encoded in an either/or binary system of bits, what are commonly thought of as 1s and 0s. These computers are based on silicon transistors, which, like a light switch, can only be in either an on or off position.

With quantum computers, information is encoded in qubits, which are quantum units of information.  With a qubit, however, this physical state isn't just 0 or 1, but can also be a linear combination of 0 and 1. Because of a strange phenomenon of quantum mechanics called "superposition," a qubit can be in both states at the same time.

This characteristic is essential to quantum computation’s potential power, allowing for solutions to problems that are intractable using classical architectures.

Advocates of quantum computing believe this never-before-seen technology will create a new global "quantum economy."

The team assembled by Microsoft will work on a type of quantum computer that is expected to be especially robust against interference from its surroundings, a situation known in quantum computing as "decoherence." The "scalable topological quantum computer" is theoretically more stable and less error-prone.

"One of the challenges in quantum computing is that the qubits interact with their environment and lose their quantum information before computations can be completed," Manfra says. "Topological quantum computing utilizes qubits that store information “non-locally” and the outside noise sources have less effect on the qubit, so we expect it to be more robust."

Manfra says that the most exciting challenge associated with building a topological quantum computer is that the Microsoft team must simultaneously solve problems of material science, condensed matter physics, electrical engineering and computer architecture.

"This is why Microsoft has assembled such a diverse set of talented people to tackle this large-scale problem,” Manfra says. "No one person or group can be expert in all aspects."

Purdue and Microsoft entered into an agreement in April 2016 that extends their collaboration on quantum computing research, effectively establishing "Station Q Purdue," one of the "Station Q" experimental research sites that work closely with two "Station Q" theory sites.

The new, multi-year agreement extends that collaboration, and includes Microsoft employees being embedded in Manfra's research team at Purdue.

Manfra’s group at Station Q Purdue will collaborate with Microsoft team members in Redmond, Wash., Microsoft's home, as well as a global experimental group established by Microsoft including experimental groups at the Niels Bohr Institute at the University of Copenhagen in Denmark, TU Delft in the Netherlands, and the University of Sydney, Australia.  They are also coupled to the theorists at Microsoft Station Q at the University of California, Santa Barbara. All groups are working together to solve quantum computing biggest challenges.

Related Stories

No stories found.
logo
DIGITAL TERMINAL
digitalterminal.in